Navigation Links
T cell


T cells are a subset of lymphocytes that play a large role in the immune response. The abbreviation "T" stands for thymus, the organ in which their final stage of development occurs.

There are many types of T cells:

  • Cytotoxic T cells (CD8+) destroy infected cells. These cells function as 'killer' or cytotoxic cells because they are able to destroy target cells which express specific antigens that they recognize.
  • Helper T cells (CD4+) are "middlemen" in the immune response. When they get activated, they proliferate and secrete cytokines, that regulate or 'help' effector lymphocyte function. They are known as one of the targets of HIV infection, and the decrease of CD4+ T cells results in AIDS. Some helper T cells secrete cytokines that turn off the immune response once an antigen has been eliminated from the body.

Every effective immune response involves T cell activation, however they are especially important in cell-mediated immunity, that is the defense against pathogenic organisms inside body cells, tumor cells and is also involved in rejection reactions.

CD4 and CD8 refer to the characteristic antigens on the surface of the different sub-types of T-lymphocytes. These CD molecules are convenient diagnostic markers for identifying and quantitating these cells by flow cytometry using specific antibodies against them. T cell activity and secretions are frequently determined using the ELISPOT technique.

Contents

T cell development

Throughout life, a source of all lymphocytes remains bone marrow. Progeny of multipotential lymphoid stem cells (CFU-L) that are destined to become T cells, move into thymus, where they are called thymocytes.

Thymocytes are immature T cells. The differentiation called thymic education occurs in a few stages in the subcapsular region of the thymic cortex. At first, multipotential T cells move at the edge of the thymic cortex. These cells express CD2,CD7 and CD3, but neither CD4 nor CD8 (they are double negative, CD4-CD8- cells). In the early stage of differentiation, they start to express CD2 and CD7 molecules. This is followed by expression of the CD1 molecule, that marks the midstage of T cell differentiation. At the end of differentiation they express TCRs, CD3, CD4 and CD8 molecules. Because they have CD4 and CD8 molecules at their surface, they are said to be double positive (CD4+CD8+).

Double positive cells move deeper in the cortex, where they get presented with self and foreign antigens in a complex with type I and type II MHC molecules by type II and type III cortical epithelioreticular cells. Only those cells that recognize the antigen presented and bind the MHC molecule with the affinity high enough, survive. Other cells go into apoptosis and their remains are engulfed by macrophages. This process is called positive selection.

All their life T cells recognize only those antigens, for which they are specific and that are binded in a complex with the MHC molecule of the type they were presented with in the thymic cortex. They are said to be limited with type I or type II MHC molecules.

The cells that survive positive selection move towards the thymic medulla where at the boundary between thymic cortex and thymic medulla and in the medulla, they get are presented with self-antigens in a complex with MHC molecules on the surface of type V and VI thymic epithelioreticular cells. If they do recognize these antigens, they die by apoptosis. Only those cells survive that do not recognize them. Other T cells die by apoptosis (a small fraction actually survives but normally is controlled so it does not cause autoimmune diseases). This process is called negative selection.

T cells go into apoptosis if they cannot express their TCR receptors, if they aren't positively selected or if they get removed by negative selection. About 98% of T cells die in the thymus. Their remains get engulfed by macrophages. Only 2% of T cells mature and are selected to survive. These cells lose either their CD4 molecules or CD8 molecules and leave the thymus via postcapillary venules.

Hormonal substances (thymosin, interferon γ, interleukins, colony stimulating factors, thymopoetin) secreted by type VI epithelioreticular cells within the thymic (Hassal's) corpuscles promote the process of thymic cell education.

It is important to note that not only is the differentiation of T cells controlled by thymic epithelioreticular cells, but also T cells influence the microarchitecture of thymic epithelioreticular cells. The interaction is bidirectional. This phenomenon is called "cross-talk".

See also

Sources

  • Janeway, et al., Immunobiology. 6th ed., Garland Science, 2005. ISBN 0815341016. NCBI makes the 5th edition availiable electronically at [1].
  • Michael H. Ross, et al. Histology: A Text and Atlas, 4th ed., Lippincott Williams & Wilkins, 2003, ISBN 0683302426
  • Marjan Vozelj, Temelji imunologije, 1th ed., DZS, 2005, Ljubljana, Slovenia, ISBN 8634128636

External links


'"/>


(Date:11/10/2014)... U.S. store shelves in early 2010, and people have ... packets can be tossed into a washing machine without ... The convenience, though, has come with risks for young ... Children,s Hospital found that from 2012 through 2013, U.S. ... than 6 years of age swallowing, inhaling, or otherwise ...
(Date:11/6/2014)... from a team of Florida State University biologists could ... adapt to and survive environmental swings such as droughts ... issue of the journal The Plant Cell , ... and proteins) is organized in a cell and how ... turned on and others are turned off. , "If ...
(Date:11/5/2014)... Fidel Santamaria, associate professor of biology in the ... researchers in the nation selected to receive a ... Grant for Exploratory Research (EAGER). The funding supports ... support researchers to create new technology that will ... Santamaria, complex behaviors in neuroscience are broken into ...
Breaking Biology News(10 mins):Study finds laundry detergent pods, serious poisoning risk for children 2Maize analysis yields whole new world of genetic science 2UTSA biology professor awarded $300,000 NSF grant for brain research 2UTSA biology professor awarded $300,000 NSF grant for brain research 3
... North Carolina at Chapel Hill has been awarded a five-year, ... of the National Institutes of Health,s Rare Diseases Clinical Research ... our discovery of rare disease-causing gene mutations, which has already ... be expanded and improved," said Michael Knowles, M.D., a professor ...
... to grow replacement organs, bones or muscles for soldiers ... disease or injury won,t be anything but science fiction ... Without blood vessels delivering oxygen and nutrients and ... Holding out stimulus money as an incentive, the ...
... Conservation biologists are setting their minimum population size ... a new study by University of Adelaide and Macquarie ... species are unlikely to persist in the face of ... around 5000 mature individuals or more. The findings have ...
Cached Biology News:UNC awarded $6.2 million renewal grant by NIH Rare Diseases Research Network 2Blood vessel builders 2Conservation targets too small to stop extinction 2
Other biology definitionOther Tags