Navigation Links
Cell nucleus


In cell biology, the nucleus (from Latin nucleus or nuculeus, kernel) is an organelle, found in the majority of eukaryotic cells, which contains most of the cell's genetic material. Nuclei have two primary functions: to control chemical reactions within the cytoplasm and to store information needed for cellular division.

The nucleus, being the largest organelle, varies in diameter from 10 to 20 micrometres. It is enclosed by a double membrane called the nuclear envelope. The inner and outer membrane fuse at regular intervals, forming nuclear pores. The nuclear envelope regulates and facilitates transport between the nucleus and the cytoplasm, while separating the chemical reactions taking place in cytoplasm from reactions happening within the nucleus. The outer membrane is continuous with the rough endoplasmic reticulum (RER) and may be studded with ribosomes. The space between the two membranes (called the "perinuclear space") is continuous with the lumen of the RER.


Drawing of nucleus and the endoplasmic reticulum.
(1) Nuclear envelope. (2) Ribosomes. (3) Nuclear pore complexes. (4) Nucleolus.
(5) Chromatin. (6) Nucleus. (7) Endoplasmic reticulum. (8) Nucleoplasm.
The whole structure is surrounded by cytoplasm. (Drawing is based on ER images.)


Inside the nucleus is one or several nucleoli surrounded by a fibrous matrix called the nucleoplasm. The nucleoplasm is a liquid with a gel-like consistency (similar in this respect to the cytoplasm), in which many substances are dissolved. These substances include nucleotide triphospates, enzymes, proteins, and transcription factors. Genetic material (DNA) is also present in the nucleus, the DNA is present as a DNA-protein complex called chromatin. The DNA is present as a number of discrete units known as chromosomes.

There are two types of chromatin: euchromatin and heterochromatin. Euchromatin is the least compact form of DNA, and the regions of DNA which constitute euchromatin contain genes which are frequently expressed by the cell.

In heterochromatin, DNA is more tightly compacted. Regions of DNA which constitute heterochromatin generally contain genes which are not expressed by the cell (this type of heterochromatin is known as facultative heterochromatin) or are regions which make up the telomeres and centromeres of the chromosomes (this type of heterochromatin is known as constitutive heterochromatin). In multicellular organisms, cells are highly specialised to perform particular functions, hence different sets of genes are required and expressed. Therefore, the regions of DNA that constitute heterochromatin vary between cell types.

Nucleoli are densely-stained structures at which ribosome subunits are assembled.


'"/>


(Date:4/11/2017)... MELBOURNE, Florida , April 11, 2017 ... "Company"), a security technology company, announces the appointment of independent ... John Bendheim to its Board of Directors, furthering the ... ... behalf of NXT-ID, we look forward to their guidance and ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC ... announced that the United States Patent and Trademark Office ... broadly covers the linking of an iris image with ... transaction) and represents the company,s 45 th issued ... patent is very timely given the multi-modal biometric capabilities ...
(Date:3/29/2017)... 2017  higi, the health IT company that operates ... America , today announced a Series B investment ... EveryMove. The new investment and acquisition accelerates higi,s strategy ... transform population health activities through the collection and workflow ... higi collects and secures data today on behalf of ...
Breaking Biology News(10 mins):
Other biology definition