Navigation Links
Biophysics


Biophysics (also biological physics) is an interdisciplinary science that applies theories and methods of the physical sciences to questions of biology. Biophysics research today comprises a number of specific biological studies, which do not share a unique identifying factor, or subject themselves to clear and concise definitions. This is the result of biophysics' relatively recent appearance as a scientific discipline. The studies included under the umbrella of biophysics range from sequence comparison to neural networks. In the recent past, biophysics included creating mechanical limbs and nanomachines to regulate biological functions. Nowadays, these are more commonly referred to as belonging to the fields of bioengineering and nanotechnology respectively. We may expect these definitions to further refine themselves.

Contents

Overview

Traditional studies in biology are conducted using statistical ensemble experiments, using molar concentrations of macromolecules. Because the molecules that comprise living cells are so small, techniques such as PCR amplification, gel blotting, fluorescence labeling and in vivo staining are used so that experimental results are observable with an unaided eye or, at most, optical magnification. Using these techniques, biologists attempt to elucidate the complex systems of interactions that give rise to the processes that make life possible. Biophysics typically addresses biological questions similar to those in biology, but the questions are asked at a molecular (i.e. low Reynolds number) level. By drawing knowledge and experimental techniques from a wide variety of disciplines (as described below), biophysicists are able to indirectly observe or model the structures and interactions of individual molecules or complexes of molecules. In addition things like solving a protein structure or measuring the kinetics of single molecule interactions, biophysics is also understood to encompass research areas that apply models and experimental techniques derived from physics (e.g. electromagnetism and quantum mechanics) to larger systems such as tissues or organs (hence the inclusion of basic neuroscience as well as more applied techniques such as fMRI).

Biophysics often does not have university-level departments of its own, but have presence as groups across departments within the fields of biology, biochemistry, chemistry, computer science, mathematics, medicine, pharmacology, physiology, physics, and neuroscience. What follows is a list of examples of how each department applies its efforts toward the study of biophysics. This list is hardly all inclusive. Nor does each subject of study belong exclusively to any particular department. Each academic institution makes its own rules and there is much mixing between departments.

  • Biology and molecular biology - Almost all biophysics efforts are included in some biology department somewhere. To include some: gene regulation, single protein dynamics, bioenergetics, patch clamping, biomechanics.
  • Structural Biology - angstrom-resolution structures of proteins, nucleic acids, lipids, carbohydrates, and complexes thereof.
  • Biochemistry and chemistry - biomolecular structure, siRNA, nucleic acid structure, structure-activity relationships.
  • Computer science - molecular simulations, sequence alignment, neural networks, databases.
  • Mathematics - graph/network theory, population modeling, phylogenetical analysis .
  • Medicine and neuroscience - tackling neural networks experimentally (brain slicing) as well as theoretically (computer models), membrane permitivity, gene therapy, understanding tumors.
  • Pharmacology and physiology - channel biology, biomolecular interactions, cellular membranes, polyketides.
  • Physics - biomolecular free energy, biomolecular structures and dynamics, protein folding, stochastic processes, surface dynamics.

Many biophysical techniques are unique to this field. Many of the research traditions in biophysics were initiated by scientists who were straight physicists, chemists, and biologists by training.

Topics in biophysics and related fields

Famous biophysicists

Other notable biophysicists

References

  • Perutz M.F. Proteins and Nucleic Acids, Elsevier, Amsterdam, 1962
  • Perutz M.F. The haemoglobin molecule.- Proc.Roy.Soc., B 173, 1969, pp. 113-140
  • Dogonadze R.R. and Urushadze Z.D. Semi-Classical Method of Calculation of Rates of Chemical Reactions Proceeding in Polar Liquids.- J.Electroanal.Chem., 32, 1971, pp. 235-245
  • Volkenshtein M.V., Dogonadze R.R., Madumarov A.K., Urushadze Z.D. and Kharkats Yu.I. Theory of Enzyme Catalysis.- Molekuliarnaya Biologia (Moscow), 6, 1972, pp. 431-439 (In Russian, English summary)

See also

External links


'"/>


(Date:11/21/2014)... , Nov. 19, 2014  Earlier this year ... New York College, and one of the most prolific ... signals that are transmitted from Smartphones to third party ... Smartphones and has one of the earliest known patents ... its usage in the military, child care, elder care ...
(Date:11/21/2014)... , Nov. 20, 2014   Atmel® Corporation ... microcontroller (MCU) and touch technology solutions, today launched the ... with the widest V cc range from ... accuracy and faster I 2 C bus communication speeds, ... EEPROM memory making them ideal for consumer, industrial, computer, ...
(Date:11/18/2014)... The Parenteral Drug Association (PDA) today confirmed that ... and at least seven more will participate in the upcoming ... Hotel in Washington D.C. , Dec. 2-4. ... support from the regulatory agencies in the United ... our effort to help advance the use of metrics in ...
Breaking Biology News(10 mins):Patented Biosensor Wearable Technology Provides a More Civilized Method of Quarantine 2Patented Biosensor Wearable Technology Provides a More Civilized Method of Quarantine 3Patented Biosensor Wearable Technology Provides a More Civilized Method of Quarantine 4Atmel Launches Industry's First Wide-V(cc) Low-Power Temperature Sensor Family 2Atmel Launches Industry's First Wide-V(cc) Low-Power Temperature Sensor Family 3Atmel Launches Industry's First Wide-V(cc) Low-Power Temperature Sensor Family 4FDA's Janet Woodcock, EMA's Emer Cooke Headline PDA Quality Metrics Conference 2
... As 17 countries and 30 organizations launch ... major environmental groups World Wildlife Fund, The ... governments, businesses, scientists, non-governmental organizations and individuals around ... coral reefs. The International Year of the Reef ...
... Stowers Institutes Proteomics Center has published a novel method ... of affinity purifications analyzed by mass spectrometry (APMS) to ... to associate with one another. The ... not only to the interactions within well-defined protein assemblies, ...
... as many scientists had given up the search, researchers ... cells with the capacity to generate new insulin-producing beta ... for humans, the newfound progenitor cells will represent an ... diabetes, the researchers report in the Jan. 25 issue ...
Cached Biology News:Environmental groups call for increased protection of coral reefs 2Stowers Proteomics Center devises method for assigning probabilities to human protein interactions 2Elusive pancreatic stem cells found in adult mice 2
Other biology definitionOther Tags