Navigation Links
Botany


Botany is the scientific study of plant life. As a branch of biology, it is also sometimes referred to as plant science(s) or plant biology. Botany covers a wide range of scientific disciplines that study the growth, reproduction, metabolism, development, diseases, and evolution of plants.

Nearly all the food we eat comes (directly and indirectly) from plants like this American long grain rice. This is one of the many reasons that botany is an important topic of study and research.
Contents

Scope and motivation of botany

As with other life forms in biology, plant life can be studied at a variety of levels, from the molecular, genetic and biochemical level through to organelles, cells, tissues, organs and the biodiversity of whole plants. At the top end of this scale, plants can be studied in populations, communities and ecosystems (as in ecology). At each of these levels a botanist might be concerned with the classification (taxonomy), structure (anatomy), or function (physiology) of plant life.

Historically, botanists studied all organisms that were not generally regarded as animal. Some of these "plant-like" organisms include: fungi (studied in mycology); bacteria and viruses (studied in microbiology); and algae (studied in phycology). Most algae, fungi, and microbes are no longer considered to be in the plant kingdom. However, attention is still given to them by botanists; and bacteria, fungi, and algae are usually covered, somewhat superficially, in introductory botany courses.

So why study plants? Plants are an utterly fundamental part of life on earth. They generate the oxygen, food, fibres, fuel and medicine that allow higher life forms to exist. While doing all this, plants also absorb carbon dioxide, an important greenhouse gas, through photosynthesis. A good understanding of plants is crucial to the future of our society as it allows us to:

  • Feed the world
  • Understand fundamental life processes
  • Utilise medicine and materials
  • Understand environmental changes

Feed the world

Virtually all of the food we eat comes from plants, either directly from staple foods and other fruit and vegetables, or indirectly through livestock which rely on plants for fodder. In other words, plants are at the base of nearly all food chains, or what ecologists call the first trophic level. Understanding how plants produce the food we eat is therefore important to be able to feed the world and provide food security for future generations, for example through plant breeding. Not all plants are beneficial to humans, weeds are a considerable problem in agriculture and botany provides some of the basic science in order to understand how to minimise their impact. Ethnobotany is the study this and other relationships between plants and people.

Gregor Mendel laid the foundations of genetics from his studies of plants.

Understand fundamental life processes

Plants are convenient organisms in which fundamental life processes (like cell division and protein synthesis for example) can be studied, without the ethical dilemmas of studying animals or humans. The genetic laws of inheritance were discovered in this way by Gregor Mendel who was studying the way pea shape is inherited. What Mendel learnt from studying plants has had far reaching benefits outside of botany.

More recently, Barbara McClintock discovered 'jumping genes' by studying maize. Although she was not a classical 'botanist' - her work demonstrates the ongoing relevance of studying plants to understand fundamental biological processes.

Utilise medicine and materials

Many of our medicinal and recreational drugs, like cannabis, caffeine and nicotine come directly from the plant kingdom. Aspirin, which originally came from the bark of willow trees, is just one example. There may be many novel cures for diseases provided by plants, waiting to be discovered. Popular stimulants like coffee, chocolate, tobacco and tea also come from plants. Most alcoholic beverages, come from fermenting plants such as hops and grapes.

Plants also provide us with many natural materials: cotton, wood, paper, linen, vegetable oils, some types of rope and rubber are just a few examples that we often take for granted. The production of silk would not be possible without the cultivation of the mulberry plant. Sugarcane and other plants have recently been put to use as sources of biofuels which are important alternatives to fossil fuels.

These are just a handful of examples showing how plant life provides humanity with important medicine and materials.

Understand environmental changes

Plants can also help us understand changes in on our environment in many ways.

So in many different ways, plants can act a bit like the 'miners canary', an early warning system alerting us to important changes in our environment. In addition to these practical and scientific reasons, plants are extremely valuable as recreation for millions of people who enjoy gardening, horticultural and culinary uses of plants everyday. Botanists also argue that botany is fascinating and rewarding topic of study in its own right.

History

Modern botany (since 1945)

A considerable amount of new knowledge today is being generated from studying model plants like Arabidopsis thaliana. This mustard weed was one of the first plants to have its genome sequenced. Other more commercially important plants like rice, wheat, maize and soybean are also having their genomes sequenced, although some of these are more challenging because they have more than two haploid (n) sets of chromosomes, a condition known as polyploidy. The "Green Yeast" Chlamydomonas reinhardtii (a single-celled, green alga) is another plant model organism that has been extensively studied and provided important insights into cell biology.

Early botany (before 1945)

Among the earliest of botanical works, written around 300 BC, are two large treatises by Theophrastus: On the History of Plants (Historia Plantarum) and On the Causes of Plants. Together these books constitute the most important contribution to botanical science during antiquity and on into the Middle Ages. The Roman medical writer, Dioscorides, provides important evidence on Greek and Roman knowledge of officinal plants.

In 1665, using an early microscope, Robert Hooke discovered cells in cork; a short time later in living plant tissue. The German Leonhart Fuchs, the Swiss Conrad von Gesner, and the British authors Nicholas Culpeper and John Gerard, published herbals that gave information on the officinal uses of plants.


See also

Bibliography

  • Peter H. Raven, Ray F. Evert, Susan E. Eichhorn: Biology of Plants, Freeman. ISBN 1572590416 - A first year undergraduate level textbook
  • James D. Mauseth: Botany : an introduction to plant biology. Jones and Bartlett Publishers, ISBN 0763721344 - A first year undergraduate level textbook
  • David Bellamy Bellamy on Botany, ISBN 0563106662 an accessible and short introduction to various botanical subjects
  • Roland Ennos and Elizabeth Sheffield Plant life, Blackwell Science, ISBN 0865427372 Introduction to plant biodiversity
  • Michael Pollan The Botany of Desire: A Plant's-eye View of the World Bloomsbury ISBN 0747563004 Account of the co-evolution of plants and humans

External links


'"/>


(Date:9/30/2014)... KONG , Sept. 30, 2014 Winners of ... Economist Events, Innovation Summit scheduled to take place at the JW ... the summit, the award winners will share their experiences and the ... who have made a proven innovation over the past decade, will ... the night before the summit. It will be the first ...
(Date:9/29/2014)... Washington, DC Monday, September 29: Between 1970 ... and fish around the globe dropped 52 percent, ... by World Wildlife Fund (WWF). This biodiversity loss ... increasing resource use of high-income countries. , In ... the report,s data point to other warning signs ...
(Date:9/29/2014)... of Texas at Arlington research team says recently identified ... their lab could open doors for homeland security and ... in the Oct. 1 issue of Optics Letters ... co-authors describe a new method to fabricate transparent nanoscintillators ... until a transparent ceramic is formed. A scintillator ...
Breaking Biology News(10 mins):Hear from The Economist's 2014 Innovation Award Winners at Innovation Summit on October 10th in Hong Kong 2Hear from The Economist's 2014 Innovation Award Winners at Innovation Summit on October 10th in Hong Kong 3Hear from The Economist's 2014 Innovation Award Winners at Innovation Summit on October 10th in Hong Kong 4Hear from The Economist's 2014 Innovation Award Winners at Innovation Summit on October 10th in Hong Kong 5Hear from The Economist's 2014 Innovation Award Winners at Innovation Summit on October 10th in Hong Kong 6Hear from The Economist's 2014 Innovation Award Winners at Innovation Summit on October 10th in Hong Kong 7Half of global wildlife lost, says new WWF report 2UT Arlington researchers develop new transparent nanoscintillators for radiation detection 2UT Arlington researchers develop new transparent nanoscintillators for radiation detection 3
... scientists have begun to harness DNA,s powerful molecular machinery ... natural ability of pairs of DNA molecules to assemble ... the California Institute of Technology,* could provide a means ... and drug delivery systems, from the bottom up. ...
... . Sperm have only one aim: to find ... emitting attractants. Calcium ions determine the beating pattern of the sperm ... the Max Planck Institute for the Physics of Complex Systems in ... centre in Bonn, an institute of the Max Planck Society, have ...
... British Columbia is arguably the most important fossil deposit ... Cambrian "Explosion," the rapid flowering of complex life from ... comprised of shells, teeth and bones, the Burgess Shale ... delicate structuresof animals belonging to Earth,s earliest complex ecosystems ...
Cached Biology News:The shape of things to come: NIST probes the promise of nanomanufacturing using DNA origami 2Sperm can count 2Mechanism for Burgess Shale-type preservation 2
Other biology definitionOther Tags