Navigation Links
Amine


Ammonia

Amines are organic compounds containing nitrogen as the key atom in the amine functional group. Amines have structures resembling ammonia, where one or more hydrogen atoms are replaced by alkyl groups or other groups where the nitrogen is bonded to a carbon atom in the group (groups symbolized by R below). However, if any of the carbons bonded to the nitrogen is part of a carbonyl group, then the compound is considered an amide rather than an amine.

See the Category:Amines for a list of types of amine and some real examples of this class of chemical.


As shown in the following pictures, if only one the hydrogens in ammonia is replaced by a carbon based group, then it is a primary amine. If two of the hydrogens are replaced by two carbon based groups, then it is a secondary amine. If all three hydrogens are replaced with three carbon based groups, then it is a tertiary amine. Note: the subscripts on the R groups are simply used to label these groups to differentiate them and show that they may be different (or they could be the same). However, the number subscripts on the H atoms show how many H atoms there are in that group.

Primary Amine:
Secondary Amine:
Tertiary Amine:
Contents

Naming

Lower amines are named with the suffix -amine.


Methylamine

Higher amines have the prefix amino as a functional group.


2-amino-pentane
(or better: pent-2-yl-amine or pentane-2-amine)

Properties

Ions of compound Ka (conjugate acid)
Aniline C6H5-NH2 2.0·10-5 M
Ammonia NH3 5.6·10-10 M
Ethylene diamine NH2-CH2-CH2-NH2 1.3·10-10 M
Butylamine CH3-CH2-CH2-CH2-NH2 0.15·10-10 M

Like ammonia, amines act as bases and are reasonably strong (see table for examples of conjugate acid Ka values). The nitrogen atom has a lone electron pair available which can accept a H+ ion to bond to the nitrogen forming a positive substituted ammonium ion. The pairs of dots on the N atoms in the chemical reactions shown in this article represent the lone electron pairs on the nitrogens in the amines. These lone pairs also contribute to the solubility of simple amines due to hydrogen bonding between water molecules and the lone electron pairs.

Also, a halogenoalkane can react with an amine to form a corresponding alkyl-substituted amine, with the release of a halogen acid.

If the reacting amine is a tertiary amine in such a reaction, then a positive quaternary ammonium cation will be formed along with a negative halide ion.

These sort of paired ion compounds are called quaternary ammonium salts. The X shown in the above reactions can also be some other leaving group forming a corresponding acid or anion.

Because inversion of the three substituent groups bonded to the nitrogen of an amine around the nitrogen's lone electron pair is usually possible, the nitrogen in the amine functional group will usually not be a chiral center.

The volatile amines often have fishy smells.

Synthesis

primary amines are firstly produced due to the Gabriel Synthesis.

Reactions

    • Dissolving secondary and tertiary amines using strong acids like HI, HBr, or HCl does not lead to a lower grade amine and an alkylhalide, hence the nitrogen-group is not a preferred leaving group.
    • Because they are basic, amines can neutralize carboxylic acids to form the corresponding substituted ammonium carboxylate salts. Upon heating to 200o C, these salts will dehydrate to form amides, if the initial amine was primary or secondary.
    • Derivatives of carboxylic acids, such as acyl chlorides, can react with primary or secondary amines to form amides.

Aromatic amines

Aromatic amines are amines in which the nitrogen is connected to an aromatic ring as in anilines. The aromatic ring strongly decreases the basicity of the amine, depending on its substituents.

See also


'"/>


(Date:6/12/2015)...  Securus Technologies, a leading provider of civil ... investigation, corrections and monitoring, announced the United States ... analyze and identify participants of a video visitation ... This system can: , Identify that ... sign-on process is actually the person participating in ...
(Date:6/10/2015)... , June 10, 2015 ... Sensor Market by Technology (Ultrasound, TOF, Structured Light, ... Electronics, Entertainment, Automotive) and by Geography - Trends ... MarketsandMarkets, the market is expected to reach $3,319.71 ... 25.51% between 2015 and 2020. Browse ...
(Date:6/9/2015)... June 09, 2015 Research and Markets ... the "Gesture Recognition & Touchless Sensing Market ... Automotive, & Others), Product (Biometric & Sanitary Equipment) ... report to their offering. The ... expected to reach $ 23.55 Billion by 2020 ...
Breaking Biology News(10 mins):Securus Announces Patent Issued for Authorized Presence Verification During Video Visitation 23D Sensor Market Worth $3,319.71 Million by 2020 23D Sensor Market Worth $3,319.71 Million by 2020 33D Sensor Market Worth $3,319.71 Million by 2020 4Global Gesture Recognition & Touchless Sensing (Technology, Application & Products) Market 2015-2020 2
... A joke among two Texas AgriLife Research scientists ... aid fetal development in female sheep. Female sheep (ewes) ... an excellent animal model for studying the physiology of ... which is used to treat male erectile dysfunction, enhanced ...
... The fact that glaciers in the Himalayan mountains are ... to rigorously examine and quantify the causes. Lawrence Berkeley ... the impacts of the most commonly blamed culpritgreenhouse gases, ... that may be causing the melting. Menon and her ...
... This release is available in <A ... the Pontifcia Universidade Catlica do Paran and ... potential of purified and expanded CD133+ cells ... myocardial infarction by intramyocardially injecting them into ...
Cached Biology News:Study shows male erectile dysfunction drug enhances fetal growth in female sheep 2Black carbon a significant factor in melting of Himalayan glaciers 2Black carbon a significant factor in melting of Himalayan glaciers 3
Other biology definitionOther Tags